2 未来可持续发展的思考与展望
在环境功能质量提升、碳达峰、碳中和的背景下,膜法污水处理应向多功能拓展、选择性分离、定制化分离和绿色化发展方向持续迈进。生物、信息、材料、人工智能、3D打印等科技的快速发展为膜法污水处理技术革新带来无限可能,未来需要进一步强化膜法污水处理技术绿色发展思维,坚持技术创新驱动,强化学科交叉融合,从而支撑构建高品质出水、工艺过程低碳排的膜法污水处理技术。
1) 多功能拓展。将膜与电催化、光催化、酶催化、先进生物处理技术等耦合,可在分离基础上赋予膜技术污染物转化、降解功能,从而拓宽膜分离应用领域与应用范围。膜体内具有发达的微纳米级别通道,在膜孔限域空间内引入非均相催化剂,从而构建纳米限域强化的高效膜反应器,实现水中污染物的快速去除,是目前膜分离多功能拓展的研究热点。而将纳米限域膜反应器用于实际污水处理时,膜内部污染对膜孔内反应位点的屏蔽效应是纳米限域催化膜实际应用需要解决的问题。合成生物学、基因编辑等生物科技的快速发展为膜生物反应器技术的迭代升级提供了强有力的技术支持,尤其是在特定场合的应用(如典型工业废水处理、污染物定向资源化等)可能是未来重点发展的方向。
2) 选择性分离。膜的选择性是衡量膜材料先进程度、技术竞争力的一个重要指标,尤其是在水和废水的高标准处理方面。以RO膜为例,目前商用膜对水中小分子微污染物的截留效果仍然有限;在集成电路行业水循环利用方面,现有高压膜分离精度仍然不能满足水中污染物去除要求,往往需要流程很长的制水过程;在特定污染物资源回收方面,往往要求膜的选择性超出现有商用膜的性能。因此,在特定应用场合,对水质的高标准要求驱使膜的选择性仍需不断提升。然而高选择性又带来对膜过滤性能的影响,水通量和截留率之间的制衡关系(Trade-off)仍是未来高压膜发展面临的挑战[74],也是未来研究需要持续突破的重点。
3) 定制化分离。在实际污水处理中,面临着分离的多样化需求。实际污水处理时往往存在特定的、更具有经济性的分离精度要求。如纺织染整行业的染盐分离、能够选择性透过Ca2+、Mg2+的纳滤过程、特定污染物富集回收等,其并非要求膜具有很高的选择性,而是要求膜具备高效分离特定污染物的“定制化”功能。例如,挥发性脂肪酸(VFA)是厌氧生物处理(非甲烷化)的另一重要生物质资源,基于膜法的NF、渗透汽化和膜蒸馏技术均具有回收VFA的潜力,但如何进行污水中VFA膜材料的定制化设计以实现VFA的定制化高效分离即是膜分离材料制备需要考虑的问题。通过膜结构微纳米级别的精细调控,设计选择性NF膜对水中微污染物进行有效去除,同时让Ca2+、Mg2+等离子透过NF膜,是目前水处理NF膜材料的研究前沿。此外,针对特种废水的处理,研发特种膜材料,实现经济高效分离处理也属于“定制化”分离的研究范畴。
4) 绿色化发展。膜法污水处理技术的绿色发展应打破传统仅关注节能降耗的单一视角,系统考虑整体膜法污水处理工艺流程的碳排放、膜材料的环境影响等。总体而言,膜法污水处理技术的绿色发展依赖于工艺节能降耗、再生水循环利用、污染物资源化能源化、膜材料的循环利用等几个方面。在工艺层面,膜分离技术在污染物富集方面具有广泛应用潜力(尤其是低浓度市政污水),可以为污染物的资源能源转化提供有力的技术支撑[139-140]。此外,膜的选择性分离、定制化分离可以在特定物质的资源回收方面发挥重要作用(如典型工业废水处理),也是膜法污水处理技术绿色发展的重要方向。在膜材料层面,如何通过低成本的手段使膜具有优异的抗污染性能是膜材料长效使用的关键,同时也是降低膜材料全生命周期环境影响的重要手段。与此同时,寻找绿色替代性材料也是膜材料研发的方向之一。而对于膜材料的“末端处理”,如何绿色低碳地循环利用报废膜材料,对“寿命终点”的膜材料进行延寿处理,是降低膜材料碳排放的重要途径。
5) 智慧化运维。膜法污水处理系统的智能化运行管理技术是未来的重点研究方向之一。研究基于人工智能的多源数据融合的精准化运管技术,建立膜污染与膜运行的可视化监测与信息化模拟系统,构建复杂应用场景下的运管策略,降低膜法污水处理系统能耗,提升系统运行效能,是推进膜法污水处理技术可持续发展的重要内容。
未来在膜法污水处理研究中,还应基于真实水环境与复杂污水体系进行研究[140],需重点关注的关键科技问题包括:1)复杂环境背景下污染物在液-功能材料-膜材料多界面、多过程转移转化机制;2)多污染物共存条件下膜微纳结构驱动的水/污染物分离与转化机制;3)复杂水环境条件下膜表面/基体结构性质与过滤性能/选择性制衡关系;4)新型膜材料-结构-效能“组学”及其绿色化设计、制备与循环利用方法;5)膜工艺中物质/能量/电子流的选择性调控与分配机理。在上述关键科技问题研究基础上,不断推动新型关键膜法污水处理技术突破,实现膜法污水处理技术的可持续发展。
3 结论
膜分离技术在污水处理与再生利用中发挥着重要作用。抗污染功能膜界面构筑是高性能膜材料设计的重要一环,改善膜材料表面/基体结构性质、引入中间层、调控膜中纳米水通道,从而突破水通量/选择性的Trade-off是高压膜材料选择性分离、定制化分离的关键所在,基于影像组学和人工智能的膜材料3D打印是膜材料精准设计的未来。通过关键性功能材料设计与工艺集成耦合,在单一膜分离功能基础上耦合污染物转化、降解的功能拓展,是低压膜分离技术出水满足高标准的重要方向,而传统的膜-生物耦合工艺应考虑在生物研究上寻求进一步突破。膜材料到使用终点时的处理、处置是膜法水处理技术面临的严峻挑战,通过报废膜再生实现膜材料的循环利用,是膜法污水处理技术可持续发展的关键。在膜工艺绿色发展方面,可以将膜与绿色低耗生物处理技术进行耦合,发挥技术的协同优势,推进膜技术持续节能降耗与污水资源化、能源化。在生物、信息、材料、人工智能、3D打印等科技快速发展的背景下,通过深化交叉融合与创新,未来膜法污水处理技术将持续在多功能拓展、选择性分离、定制化分离和绿色化发展方向不断革新与迭代升级。
参考文献
[1]
SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452: 301-310. DOI:10.1038/nature06599
[2]
ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333: 712-717. DOI:10.1126/science.1200488
[3]
ALVAREZ P J J, CHAN C K, ELIMELECH M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology, 2018, 13(8): 634-641. DOI:10.1038/s41565-018-0203-2
[4]
ALTURKI A A, TADKAEW N, MCDONALD J A, et al. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications[J]. Journal of Membrane Science, 2010, 365(1/2): 206-215.
[5]
WANG Z X, DESHMUKH A, DU Y H, et al. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes[J]. Water Research, 2020, 170: 115317. DOI:10.1016/j.watres.2019.115317
[6]
LI M, WANG X, PORTER C J, et al. Concentration and recovery of dyes from textile wastewater using a self-standing, support-free forward osmosis membrane[J]. Environmental Science & Technology, 2019, 53(6): 3078-3086.
[7]
LAN Y D, GROENEN-SERRANO K, COETSIER C, et al. Nanofiltration performances after membrane bioreactor for hospital wastewater treatment: Fouling mechanisms and the quantitative link between stable fluxes and the water matrix[J]. Water Research, 2018, 146: 77-87. DOI:10.1016/j.watres.2018.09.004
[8]
ZHANG X R, GUO Y, WANG T L, et al. Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment: Role of silver@silica nanopollens[J]. Water Research, 2020, 176: 115749. DOI:10.1016/j.watres.2020.115749
[9]
XIAO K, LIANG S, WANG X M, et al. Current state and challenges of full-scale membrane bioreactor applications: A critical review[J]. Bioresource Technology, 2019, 271: 473-481. DOI:10.1016/j.biortech.2018.09.061
[10]
ZHAO Y, WU M Y, SHEN P X, et al. Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium[J]. Journal of Membrane Science, 2021, 618: 118668. DOI:10.1016/j.memsci.2020.118668
[11]
LI Y J, SHI S Y, CAO H B, et al. Robust antifouling anion exchange membranes modified by graphene oxide (GO)-enhanced Co-deposition of tannic acid and polyethyleneimine[J]. Journal of Membrane Science, 2021, 625: 119111. DOI:10.1016/j.memsci.2021.119111
[12]
ROMAN M, GUTIERREZ L, VAN DIJK L H, et al. Effect of pH on the transport and adsorption of organic micropollutants in ion-exchange membranes in electrodialysis-based desalination[J]. Separation and Purification Technology, 2020, 252: 117487. DOI:10.1016/j.seppur.2020.117487
[13]
MA L S, GUTIERREZ L, VAN VOOREN T, et al. Fate of organic micropollutants in reverse electrodialysis: Influence of membrane fouling and channel clogging[J]. Desalination, 2021, 512: 115114. DOI:10.1016/j.desal.2021.115114
[14]
BAZINET L, MOALIC M. Coupling of porous filtrationand ion-exchange membranes in an electrodialysis stack and impact on cation selectivity: A novel approach for sea water demineralization and the production of physiological water[J]. Desalination, 2011, 277(1/2/3): 356-363.
[15]
ZHANG R N, LIU Y N, HE M R, et al. Antifouling membranes for sustainable water purification: Strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21): 5888-5924. DOI:10.1039/C5CS00579E
[16]
ZHAO X T, ZHANG R N, LIU Y N, et al. Antifouling membrane surface construction: Chemistry plays a critical role[J]. Journal of Membrane Science, 2018, 551: 145-171. DOI:10.1016/j.memsci.2018.01.039
[17]
TANG C Y, YANG Z, GUO H, et al. Potable water reuse through advanced membrane technology[J]. Environmental Science & Technology, 2018, 52(18): 10215-10223.
[18]
HAASE M F, JEON H, HOUGH N, et al. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation[J]. Nature Communications, 2017, 8: 1234. DOI:10.1038/s41467-017-01409-3
[19]
WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. DOI:10.1038/nature10447
[20]
WANG J T, YUAN Z J, WU X L, et al. Beetle-inspired assembly of heterostructured lamellar membranes with polymer cluster-patterned surface for enhanced molecular permeation[J]. Advanced Functional Materials, 2019, 29(23): 1900819. DOI:10.1002/adfm.201900819
[21]
JIANG X, SHAO Y, LI J, et al. Bioinspired hybrid micro/nanostructure composited membrane with intensified mass transfer and antifouling for high saline water membrane distillation[J]. ACS Nano, 2020, 14(12): 17376-17386. DOI:10.1021/acsnano.0c07543
[22]
LI Q L, ELIMELECH M. Organic fouling and chemical cleaning of nanofiltration membranes: Measurements and mechanisms[J]. Environmental Science & Technology, 2004, 38(17): 4683-4693.
[23]
HAO X J, GAO S S, TIAN J Y, et al. Calcium-carboxyl intrabridging during interfacial polymerization: A novel strategy to improve antifouling performance of thin film composite membranes[J]. Environmental Science & Technology, 2019, 53(8): 4371-4379.
[24]
ZHANG J, WANG Q Y, WANG Z W, et al. Modification of poly(vinylidene fluoride)/polyethersulfone blend membrane with polyvinyl alcohol for improving antifouling ability[J]. Journal of Membrane Science, 2014, 466: 293-301. DOI:10.1016/j.memsci.2014.05.006
[25]
ZHANG J Q, PAN X L, XUE Q Z, et al. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion[J]. Journal of Membrane Science, 2017, 532: 38-46. DOI:10.1016/j.memsci.2017.03.004
[26]
GAO S J, ZHU Y Z, WANG J L, et al. Layer-by-layer construction of Cu2+/alginate multilayer modified ultrafiltration membrane with bioinspired superwetting property for high-efficient crude-oil-in-water emulsion separation[J]. Advanced Functional Materials, 2018, 28(49): 1801944. DOI:10.1002/adfm.201801944
[27]
THAMARAISELVAN C, CARMIEL Y, ELIAD G, et al. Modification of a polypropylene feed spacer with metal oxide-thin film by chemical bath deposition for biofouling control in membrane filtration[J]. Journal of Membrane Science, 2019, 573: 511-519. DOI:10.1016/j.memsci.2018.12.033
[28]
ZHOU H J, YANG G W, ZHANG Y Y, et al. Bioinspired block copolymer for mineralized nanoporous membrane[J]. ACS Nano, 2018, 12(11): 11471-11480. DOI:10.1021/acsnano.8b06521
[29]
JIANG J H, ZHU L P, ZHU L J, et al. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone)[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 12895-12904.
[30]
OH H S, YEON K M, YANG C S, et al. Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane[J]. Environmental Science & Technology, 2012, 46(9): 4877-4884.
[31]
ZHAO X T, SU Y L, LI Y F, et al. Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances[J]. Journal of Membrane Science, 2014, 450: 111-123. DOI:10.1016/j.memsci.2013.08.044
[32]
WANG S Y, FANG L F, CHENG L, et al. Improved antifouling properties of membranes by simple introduction of zwitterionic copolymers via electrostatic adsorption[J]. Journal of Membrane Science, 2018, 564: 672-681. DOI:10.1016/j.memsci.2018.07.076
[33]
YANG Z, WU Y C, WANG J Q, et al. In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane[J]. Environmental Science & Technology, 2016, 50(17): 9543-9550.
[34]
BEN-SASSON M, ZODROW K R, QI G G, et al. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties[J]. Environmental Science & Technology, 2014, 48(1): 384-393.
[35]
CHUNG Y T, MAHMOUDI E, MOHAMMAD A W, et al. Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control[J]. Desalination, 2017, 402: 123-132. DOI:10.1016/j.desal.2016.09.030
[36]
ZHANG X R, MA J X, TANG C Y, et al. Antibiofouling polyvinylidene fluoride membrane modified by quaternary ammonium compound: Direct contact-killing versus induced indirect contact-killing[J]. Environmental Science & Technology, 2016, 50(10): 5086-5093.
[37]
ZHANG X R, WANG Z W, CHEN M, et al. Membrane biofouling control using polyvinylidene fluoride membrane blended with quaternary ammonium compound assembled on carbon material[J]. Journal of Membrane Science, 2017, 539: 229-237. DOI:10.1016/j.memsci.2017.06.008
[38]
ZHANG X R, WANG Z W, TANG C Y, et al. Modification of microfiltration membranes by alkoxysilane polycondensation induced quaternary ammonium compounds grafting for biofouling mitigation[J]. Journal of Membrane Science, 2018, 549: 165-172. DOI:10.1016/j.memsci.2017.12.004
[39]
CHEN M, ZHANG X R, WANG Z W, et al. QAC modified PVDF membranes: Antibiofouling performance, mechanisms, and effects on microbial communities in an MBR treating municipal wastewater[J]. Water Research, 2017, 120: 256-264. DOI:10.1016/j.watres.2017.05.012
[40]
ZHANG X R, PING M, WU Z C, et al. Microfiltration membranes modified by silver-decorated biomimetic silica nanopollens for mitigating biofouling: Synergetic effects of nanopollens and silver nanoparticles[J]. Journal of Membrane Science, 2020, 597: 117773. DOI:10.1016/j.memsci.2019.117773
[41]
KIM J H, CHOI D C, YEON K M, et al. Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching[J]. Environmental Science & Technology, 2011, 45(4): 1601-1607.
[42]
TAN Z, CHEN S F, PENG X S, et al. Polyamide membranes with nanoscale turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. DOI:10.1126/science.aar6308
[43]
MA X H, YAO Z K, YANG Z, et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2): 123-130.
[44]
PENG L E, YAO Z K, YANG Z, et al. Dissecting the role of substrate on the morphology and separation properties of thin film composite polyamide membranes: Seeing is believing[J]. Environmental Science & Technology, 2020, 54(11): 6978-6986.
[45]
ZHU S, ZHAO S, WANG Z, et al. Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate[J]. Journal of Membrane Science, 2015, 493: 263-274. DOI:10.1016/j.memsci.2015.07.013
[46]
DAI R B, LI J Y, WANG Z W. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review[J]. Advances in Colloid and Interface Science, 2020, 282: 102204. DOI:10.1016/j.cis.2020.102204
[47]
KARAN S, JIANG Z W, LIVINGSTON A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. DOI:10.1126/science.aaa5058
[48]
WANG J J, YANG H C, WU M B, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. Journal of Materials Chemistry A, 2017, 5(31): 16289-16295. DOI:10.1039/C7TA00501F
[49]
YANG Z, ZHOU Z W, GUO H, et al. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: Toward enhanced nanofiltration performance[J]. Environmental Science & Technology, 2018, 52(16): 9341-9349.
[50]
ZHOU Z Y, HU Y X, BOO C, et al. High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer[J]. Environmental Science & Technology Letters, 2018, 5(5): 243-248.
[51]
ZHU Y Z, XIE W, GAO S J, et al. Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high-flux and high-rejection desalination[J]. Small, 2016, 12(36): 5034-5041. DOI:10.1002/smll.201601253
[52]
YANG Z, GUO H, TANG C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. Journal of Membrane Science, 2019, 590: 117297. DOI:10.1016/j.memsci.2019.117297
[53]
ZHU J Y, HOU J W, YUAN S S, et al. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance[J]. Journal of Materials Chemistry A, 2019, 7(27): 16313-16322. DOI:10.1039/C9TA02299F
[54]
JEONG B H, HOEK E M V, YAN Y S, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes[J]. Journal of Membrane Science, 2007, 294(1/2): 1-7.
[55]
WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1: 16018. DOI:10.1038/natrevmats.2016.18
[56]
YANG Z, MA X H, TANG C Y. Recent development of novel membranes for desalination[J]. Desalination, 2018, 434: 37-59. DOI:10.1016/j.desal.2017.11.046
[57]
TANG C Y, WANG Z N, PETRINI I, et al. Biomimetic aquaporin membranes coming of age[J]. Desalination, 2015, 368: 89-105. DOI:10.1016/j.desal.2015.04.026
[58]
TANG C Y, ZHAO Y, WANG R, et al. Desalination by biomimetic aquaporin membranes: Review of status and prospects[J]. Desalination, 2013, 308: 34-40. DOI:10.1016/j.desal.2012.07.007
[59]
SHEN Y X, SABOE P O, SINES I T, et al. Biomimetic membranes: A review[J]. Journal of Membrane Science, 2014, 454: 359-381. DOI:10.1016/j.memsci.2013.12.019
[60]
BARBOIU M, GILLES A. From natural to bioassisted and biomimetic artificial water channel systems[J]. Accounts of Chemical Research, 2013, 46(12): 2814-2823. DOI:10.1021/ar400025e
[61]
MANAWI Y, KOCHKODAN V, HUSSEIN M A, et al. Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination[J]. Desalination, 2016, 391: 69-88. DOI:10.1016/j.desal.2016.02.015
[62]
HINDS B J, CHOPRA N, RANTELL T, et al. Aligned multiwalled carbon nanotube membranes[J]. Science, 2004, 303(5654): 62-65. DOI:10.1126/science.1092048
[63]
DAS R, ALI M E, HAMID S B A, et al. Carbon nanotube membranes for water purification: A bright future in water desalination[J]. Desalination, 2014, 336: 97-109. DOI:10.1016/j.desal.2013.12.026
[64]
SORRIBAS S, GORGOJO P, TÉLLEZ C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2013, 135(40): 15201-15208. DOI:10.1021/ja407665w
[65]
PENDERGAST M M, HOEK E M V. A review of water treatment membrane nanotechnologies[J]. Energy & Environmental Science, 2011, 4(6): 1946.
[66]
LIU X L, DEMIR N K, WU Z T, et al. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. Journal of the American Chemical Society, 2015, 137(22): 6999-7002. DOI:10.1021/jacs.5b02276
[67]
HE Y R, TANG Y P, MA D C, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal[J]. Journal of Membrane Science, 2017, 541: 262-270. DOI:10.1016/j.memsci.2017.06.061
[68]
CHEN L, SHI G S, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550: 380-383. DOI:10.1038/nature24044
[69]
HU M, MI B X. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8): 3715-3723.
[70]
HU R R, ZHANG R J, HE Y J, et al. Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization[J]. Journal of Membrane Science, 2018, 564: 813-819. DOI:10.1016/j.memsci.2018.07.087
[71]
XU G R, XU J M, SU H C, et al. Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions[J]. Desalination, 2019, 451: 18-34. DOI:10.1016/j.desal.2017.09.024
[72]
HIRUNPINYOPAS W, PRESTAT E, WORRALL S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes[J]. ACS Nano, 2017, 11(11): 11082-11090. DOI:10.1021/acsnano.7b05124
[73]
COHEN-TANUGI D, MCGOVERN R K, DAVE S H, et al. Quantifying the potential of ultra-permeable membranes for water desalination[J]. Energy & Environmental Science, 2014, 7(3): 1134-1141.
[74]
PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. DOI:10.1126/science.aab0530
[75]
SECCHI E, MARBACH S, NIGUōS A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature, 2016, 537(7619): 210-213. DOI:10.1038/nature19315
[76]
HUMMER G, RASAIAH J C, NOWORYTA J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. DOI:10.1038/35102535
[77]
DAI R B, GUO H, TANG C Y, et al. Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds[J]. Environmental Science & Technology, 2019, 53(23): 13776-13783.
[78]
DAI R B, WANG X Y, TANG C Y, et al. Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds[J]. Environmental Science & Technology, 2020, 54(12): 7619-7628.
[79]
YANG Z, GUO H, YAO Z K, et al. Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes[J]. Environmental Science & Technology, 2019, 53(9): 5301-5308.
[80]
YIN J, YANG Z, TANG C Y, et al. Probing the contributions of interior and exterior channels of nanofillers toward the enhanced separation performance of a thin-film nanocomposite reverse osmosis membrane[J]. Environmental Science & Technology Letters, 2020, 7(10): 766-772.
[81]
CULP T E, SHEN Y X, GEITNER M, et al. Electron tomography reveals details of the internal microstructure of desalination membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(35): 8694-8699. DOI:10.1073/pnas.1804708115
[82]
LI Y Q, KŁOSOWSKI M M, MCGILVERY C M, et al. Probing flow activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers[J]. Journal of Membrane Science, 2017, 534: 9-17. DOI:10.1016/j.memsci.2017.04.005
[83]
BARNETT J W, BILCHAK C R, WANG Y, et al. Designing exceptional gas-separation polymer membranes using machine learning[J]. Science Advances, 2020, 6(20): eaaz4301. DOI:10.1126/sciadv.aaz4301
[84]
YEO C S H, XIE Q, WANG X N, et al. Understanding and optimization of thin film nanocomposite membranes for reverse osmosis with machine learning[J]. Journal of Membrane Science, 2020, 606: 118135. DOI:10.1016/j.memsci.2020.118135
[85]
OROPALLO W, PIEGL L A. Ten challenges in 3D printing[J]. Engineering with Computers, 2016, 32(1): 135-148. DOI:10.1007/s00366-015-0407-0
[86]
LV J, GONG Z J, HE Z K, et al. 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation[J]. Journal of Materials Chemistry A, 2017, 5(24): 12435-12444. DOI:10.1039/C7TA02202F
[87]
YUAN S S, STROBBE D, KRUTH J P, et al. Super-hydrophobic 3D printed polysulfone membranes with a switchable wettability by self-assembled candle soot for efficient gravity-driven oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(48): 25401-25409. DOI:10.1039/C7TA08836A
[88]
SCHUBERT C, VAN LANGEVELD M C, DONOSO L A. Innovations in 3D printing: A 3D overview from optics to organs[J]. The British Journal of Ophthalmology, 2014, 98(2): 159-161. DOI:10.1136/bjophthalmol-2013-304446
[89]
MA X H, YANG Z, YAO Z K, et al. Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes[J]. Environmental Science & Technology Letters, 2018, 5(2): 117-122.
[90]
CHOWDHURY M R, STEFFES J, HUEY B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361: 682-686. DOI:10.1126/science.aar2122
[91]
KHANZADA N K, FARID M U, KHARRAZ J A, et al. Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review[J]. Journal of Membrane Science, 2020, 598: 117672. DOI:10.1016/j.memsci.2019.117672
[92]
MA J X, DAI R B, CHEN M, et al. Applications of membrane bioreactors for water reclamation: Micropollutant removal, mechanisms and perspectives[J]. Bioresource Technology, 2018, 269: 532-543. DOI:10.1016/j.biortech.2018.08.121
[93]
KUMAR M, LEE P Y, FUKUSIHMA T, et al. Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR[J]. Bioresource Technology, 2012, 113: 148-153. DOI:10.1016/j.biortech.2011.12.102
[94]
WANG Z W, MA J X, TANG C Y, et al. Membrane cleaning in membrane bioreactors: A review[J]. Journal of Membrane Science, 2014, 468: 276-307. DOI:10.1016/j.memsci.2014.05.060
[95]
QIN J J, KEKRE K A, TAO G H, et al. New option of MBR-RO process for production of NE Water from domestic sewage[J]. Journal of Membrane Science, 2006, 272(1/2): 70-77.
[96]
ZHAO Y Y, TONG T Z, WANG X M, et al. Differentiating solutes with precise nanofiltration for next generation environmental separations: A review[J]. Environmental Science & Technology, 2021, 55(3): 1359-1376.
[97]
ZHENG J, WANG Z, MA J, et al. Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters[J]. Environmental Science & Technology, 2018, 52(7): 4117-4126.
[98]
ZHENG J J, MA J X, WANG Z W, et al. Contaminant removal from source waters using cathodic electrochemical membrane filtration: Mechanisms and implications[J]. Environmental Science & Technology, 2017, 51(5): 2757-2765.
[99]
FAN X F, ZHAO H M, QUAN X, et al. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation[J]. Water Research, 2016, 88: 285-292. DOI:10.1016/j.watres.2015.10.043
[100]
LI C, SONG C W, TAO P, et al. Enhanced separation performance of coal-based carbon membranes coupled with an electric field for oily wastewater treatment[J]. Separation and Purification Technology, 2016, 168: 47-56. DOI:10.1016/j.seppur.2016.05.020
[101]
BANI-MELHEM K, ELEKTOROWICZ M. Development of a novel submerged membrane electro-bioreactor (SMEBR): Performance for fouling reduction[J]. Environmental Science & Technology, 2010, 44(9): 3298-3304.
[102]
LI J Y, MA J X, DAI R B, et al. Self-enhanced decomplexation of Cu-organic complexes and Cu recovery from wastewaters using an electrochemical membrane filtration system[J]. Environmental Science & Technology, 2021, 55(1): 655-664.
[103]
REN S J, BOO C, GUO N, et al. Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent[J]. Environmental Science & Technology, 2018, 52(15): 8666-8673.
[104]
ALMASSI S, LI Z, XU W Q, et al. Simultaneous adsorption and electrochemical reduction of N-nitrosodimethylamine using carbon-Ti4O7 composite reactive electrochemical membranes[J]. Environmental Science & Technology, 2019, 53(2): 928-937.
[105]
NI L F, ZHU Y J, MA J, et al. Novel strategy for membrane biofouling control in MBR with CdS/MIL-101 modified PVDF membrane by in situ visible light irradiation[J]. Water Research, 2021, 188: 116554. DOI:10.1016/j.watres.2020.116554
[106]
LEE J, WON Y J, CHOI D C, et al. Micro-patterned membranes with enzymatic quorum quenching activity to control biofouling in an MBR for wastewater treatment[J]. Journal of Membrane Science, 2019, 592: 117365. DOI:10.1016/j.memsci.2019.117365
[107]
SINGH J, SAHARAN V, KUMAR S, et al. Laccase grafted membranes for advanced water filtration systems: A green approach to water purification technology[J]. Critical Reviews in Biotechnology, 2018, 38(6): 883-901. DOI:10.1080/07388551.2017.1417234
[108]
QI K Q, CHEN M, DAI R B, et al. Development of an electrochemical ceramic membrane bioreactor for the removal of PPCPs from wastewater[J]. Water, 2020, 12(6): 1838. DOI:10.3390/w12061838
[109]
CHEN M, XU J, DAI R B, et al. Development of a moving-bed electrochemical membrane bioreactor to enhance removal of low-concentration antibiotic from wastewater[J]. Bioresource Technology, 2019, 293: 122022. DOI:10.1016/j.biortech.2019.122022
[110]
CHEN M, REN L H, QI K Q, et al. Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor[J]. Bioresource Technology, 2020, 311: 123579. DOI:10.1016/j.biortech.2020.123579
[111]
LI Z Y, DAI R B, YANG B C, et al. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development: Performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 404: 124198. DOI:10.1016/j.jhazmat.2020.124198
[112]
LI F, LI Y X, CAO Y X, et al. Modular engineering toincrease intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis[J]. Nature Communications, 2018, 9: 3637. DOI:10.1038/s41467-018-05995-8
[113]
WOOD T L, GUHA R, TANG L, et al. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms[J]. PNAS, 2016, 113(20): E2802-E2811. DOI:10.1073/pnas.1521731113
[114]
ANG W S, TIRAFERRI A, CHEN K L, et al. Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent[J]. Journal of Membrane Science, 2011, 376(1/2): 196-206.
[115]
NUNES S P, CULFAZ-EMECEN P Z, RAMON G Z, et al. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes[J]. Journal of Membrane Science, 2020, 598: 117761. DOI:10.1016/j.memsci.2019.117761
[116]
COUTINHO DE PAULA E, SANTOS AMARAL M C. Environmental and economic evaluation of end-of-life reverse osmosis membranes recycling by means of chemical conversion[J]. Journal of Cleaner Production, 2018, 194: 85-93. DOI:10.1016/j.jclepro.2018.05.099
[117]
LAWLER W, BRADFORD-HARTKE Z, CRAN M J, et al. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes[J]. Desalination, 2012, 299: 103-112. DOI:10.1016/j.desal.2012.05.030
[118]
LEJARAZU-LARRAÑAGA A, MOLINA S, ORTIZ J M, et al. Circular economy in membrane technology: Using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis[J]. Journal of Membrane Science, 2020, 593: 117423. DOI:10.1016/j.memsci.2019.117423
[119]
MORADI M R, PIHLAJAMÄKI A, HESAMPOUR M, et al. End-of-life RO membranes recycling: Reuse as NF membranes by polyelectrolyte layer-by-layer deposition[J]. Journal of Membrane Science, 2019, 584: 300-308. DOI:10.1016/j.memsci.2019.04.060
[120]
GARCÍA-PACHECO R, LANDABURU-AGUIRRE J, LEJARAZU-LARRAÑAGA A, et al. Free chlorine exposure dose (ppm·h) and its impact on RO membranes ageing and recycling potential[J]. Desalination, 2019, 457: 133-143. DOI:10.1016/j.desal.2019.01.030
[121]
MORÓN-LÓPEZ J, NIETO-REYES L, AGUADO S, et al. Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability[J]. Chemosphere, 2019, 231: 103-112. DOI:10.1016/j.chemosphere.2019.05.108
[122]
DAI R B, HAN H Y, WANG T L, et al. Fouling is the beginning: Upcycling biopolymer-fouled substrates for fabricating high-permeance thin-film composite polyamide membranes[J]. Green Chemistry, 2021, 23(2): 1013-1025. DOI:10.1039/D0GC03340E
[123]
DAI R B, HAN H Y, WANG T L, et al. Cleaning-healing-interfacial polymerization strategy for upcycling real end-of-life polyvinylidene fluoride microfiltration membranes[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(30): 10352-10360.
[124]
YU Q L, ZHANG Y B. Fouling-resistant biofilter of an anaerobic electrochemical membrane reactor[J]. Nature Communications, 2019, 10: 4860. DOI:10.1038/s41467-019-12838-7
[125]
ZHU Y J, CAO L J, WANG Y Y. Characteristics of a self-forming dynamic membrane coupled with a bioreactor in application of anammox processes[J]. Environmental Science & Technology, 2019, 53(22): 13158-13167.
[126]
MEI X J, WANG Z W, MIAO Y, et al. Recover energy from domestic wastewater using anaerobic membrane bioreactor: Operating parameters optimization and energy balance analysis[J]. Energy, 2016, 98: 146-154. DOI:10.1016/j.energy.2016.01.011
[127]
MCCARTY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer: Can this be achieved[J]. Environmental Science & Technology, 2011, 45(17): 7100-7106.
[128]
SHIN C, MCCARTY P L, KIM J, et al. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR)[J]. Bioresource Technology, 2014, 159: 95-103. DOI:10.1016/j.biortech.2014.02.060
[129]
PETROPOULOS E, DOLFING J, DAVENPORT R J, et al. Developing cold-adapted biomass for the anaerobic treatment of domestic wastewater at low temperatures (4, 8 and 15℃) with inocula from cold environments[J]. Water Research, 2017, 112: 100-109. DOI:10.1016/j.watres.2016.12.009
[130]
CRONE B C, GARLAND J L, SORIAL G A, et al. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review[J]. Water Research, 2016, 104: 520-531. DOI:10.1016/j.watres.2016.08.019
[131]
LI X S, DUTTA A, DONG Q R, et al. Dissolved methane harvesting using omniphobic membranes for anaerobically treated wastewaters[J]. Environmental Science & Technology Letters, 2019, 6(4): 228-234.
[132]
ANANTHARAMAN A, CHUN Y, HUA T, et al. Pre-deposited dynamic membrane filtration-A review[J]. Water Research, 2020, 173: 115558. DOI:10.1016/j.watres.2020.115558
[133]
XIE Z F, WANG Z W, WANG Q Y, et al. An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: Performance and microbial community identification[J]. Bioresource Technology, 2014, 161: 29-39. DOI:10.1016/j.biortech.2014.03.014
[134]
CHEN G, WU W, XU J, et al. An anaerobic dynamic membrane bioreactor for enhancing sludge digestion: Impact of solids retention time on digestion efficacy[J]. Bioresource Technology, 2021, 329: 124864. DOI:10.1016/j.biortech.2021.124864
[135]
DAI R B, ZHANG X R, LIU M X, et al. Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis[J]. Journal of Membrane Science, 2019, 573: 46-54. DOI:10.1016/j.memsci.2018.11.075
[136]
PHUNTSHO S, SHON H K, HONG S, et al. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions[J]. Journal of Membrane Science, 2011, 375(1/2): 172-181.
[137]
CHEN L, GU Y S, CAO C Q, et al. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment[J]. Water Research, 2014, 50: 114-123. DOI:10.1016/j.watres.2013.12.009
[138]
PAL P, MANNA A K. Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes[J]. Water Research, 2010, 44(19): 5750-5760. DOI:10.1016/j.watres.2010.05.031
[139]
LI W W, YU H Q. Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment[J]. Engineering, 2016, 2(4): 113-131.
[140]
曲久辉, 王凯军, 王洪臣, 等. 建设面向未来的中国污水处理概念厂[N]. 中国环境报, 2014-01-07(10).